Michael Ulbrich Nonsmooth Newton-like Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
نویسنده
چکیده
منابع مشابه
Optimization Methods in Banach Spaces
In this chapter we present a selection of important algorithms for optimization problems with partial differential equations. The development and analysis of these methods is carried out in a Banach space setting. We begin by introducing a general framework for achieving global convergence. Then, several variants of generalized Newton methods are derived and analyzed. In particular, necessary a...
متن کاملVector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملSchedule of Talks
9:15 9:30 Opening 9:30 10:30 John A. Burns Sensitivity Analysis, Transition to Turbulence and Control 10:30 11:00 Coffee Break 11:00 12:00 Rainer Tichatschke Bregman-function-based regularization of variational inequalities with monotone operators 12:00 13:00 Lunch Break 13:00 14:00 Stefan Ulbrich Parallel All-at-Once methods with ”Parareal” time-domain decomposition for time-dependent PDE-cons...
متن کاملSemismooth Newton Methods for Operator Equations in Function Spaces
We develop a semismoothness concept for nonsmooth superposition operators in function spaces. The considered class of operators includes NCP-function-based reformulations of infinite-dimensional nonlinear complementarity problems, and thus covers a very comprehensive class of applications. Our results generalize semismoothness and -order semismoothness from finite-dimensional spaces to a Banach...
متن کاملGlobal and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities
The smoothing Newton method for solving a system of nonsmooth equations F (x) = 0, which may arise from the nonlinear complementarity problem, the variational inequality problem or other problems, can be regarded as a variant of the smoothing method. At the kth step, the nonsmooth function F is approximated by a smooth function f(·, εk), and the derivative of f(·, εk) at xk is used as the Newto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002